Диоды

Диод представляет собой пассивный (т. е. он не имеет встроенного источника энергии) нелинейный элемент с двумя выводами.
диод
Вольт‑амперная характеристика диода
вах диода
   
На условном обозначении направление стрелки диода (так обозначают анод элемента) совпадает с направлением тока. Например, если через диод в направлении от анода к катоду протекает ток величиной 10 мА, то анод на 0,5 В более положителен, чем катод; эта разница напряжений называется «прямым напряжением диода». Обратный ток для диодов общего назначения измеряется в наноамперах (обратите внимание на разный масштаб измерений по оси абсцисс для прямого и обратного тока), и его, как правило, можно не принимать во внимание до тех пор, пока напряжение на диоде не достигнет значения напряжения пробоя (это напряжение называют также пиковым обратным напряжением). Для диодов общего назначения типа 1N914 напряжение пробоя составляет обычно 75 В. Чаще всего падение напряжения на диоде, обусловленное прямым током через него, составляет от 0,5 до 0,8 В. Таким падением напряжения можно пренебречь, и тогда диод можно рассматривать как проводник, пропускающий ток только в одном направлении.
Отметим два момента: 1) диод не обладает сопротивлением в указанном выше смысле (не подчиняется закону Ома); 2) схему, содержащую диоды, нельзя заменить эквивалентной.

Примеры использования диодов

Выпрямление сигналов

 Бывают такие случаи, когда сигнал должен иметь только одну полярность. Если входной сигнал не является синусоидальным, то говорить о его выпрямлении не принято, хотя процесс выпрямления применим и к нему. Например, требуется получить последовательность импульсов, совпадающих с моментами нарастания прямоугольного сигнала. Проще всего продифференцировать прямоугольный сигнал, а затем выпрямить его.
диоды
Следует всегда иметь в виду, что прямое напряжение диода составляет приблизительно 0,6 В. На выходе нашей схемы, например, сигнал будет получен лишь в том случае, когда двойная амплитуда прямоугольного входного сигнала будет не меньше 0,6 В. Это условие накладывает определенные ограничения на разработку схемы, но известны приемы, с помощью которых их можно преодолеть.
Например, можно воспользоваться диодом Шоттки, для которого прямое напряжение составляет около 0,25 В. Можно также воспользоваться следующей схемой.
диоды
Компенсация прямого напряжения на диоде в схеме диодного ограничителя сигналов.
Прямое напряжение на диоде Д2 компенсируется за счет диода Д1, обеспечивающего смещение величиной 0,6 В. Это смещение определяет порог проводимости для Д2 . Формирование смещения с помощью диода Д1 (а не с помощью, например, делителя напряжения) имеет следующие преимущества: нет необходимости проводить регулировку уровня смещения, так как схема обеспечивает почти идеальную компенсацию; изменение прямого напряжения диодов (связанное, например, с изменением температуры) компенсируется и не сказывается на работе схемы.

Диодные вентили

Еще одна область применения диодов основана на их способности пропускать большее из двух напряжений, не оказывая влияния на меньшее. Схемы, в которых используется это свойство, объединены в семейство логических схем. Рассмотрим схему с резервной батареей питания  – она, используется в устройствах, которые должны работать непрерывно даже при отключениях питания (например, точные электронные часы). Схема, показанная на рисунке, включает как раз такую батарею. 
диодный вентиль схема
Диодный вентиль ИЛИ с резервной батареей питания
В отсутствие сбоев питания батарея не работает, при возникновении сбоя питание на схему начинает поступать от батареи, при этом перерыва в подаче питания не происходит.

Диодные ограничители

В тех случаях, когда необходимо ограничить диапазон изменения сигнала, например напряжения, можно воспользоваться схемой, показанной на рисунке
диодный ограничитель схема
Диодный ограничитель напряжения
Благодаря диоду выходное напряжение не может превышать значения +5,6 В, при этом наличие диода никак не сказывается на меньших значениях напряжения (в том числе и на отрицательных); единственное условие состоит в том, что отрицательное входное напряжение не должно достигать значения напряжения пробоя (например, для диода типа 1N914 это значение составляет – 70 В). Во всех схемах семейства цифровых логических КМОП‑схем используются входные диодные ограничители. Они предохраняют эти чувствительные схемы от разрушения под действием разрядов статического электричества.
Эталонное опорное напряжение можно подавать на ограничитель от делителя напряжения
диоды
Если делитель напряжения заменить его эквивалентной схемой, то исходная схема преобразуется к виду, представленному на рисунке
диоды
Анализируя преобразованную схему, можно заключить, что импеданс со стороны выхода делителя напряжения (Rдел ) должен быть мал по сравнению с сопротивлением R . Когда диод открыт (входное напряжение превышает напряжения ограничения), выходное напряжение совпадает с напряжением, снимаемым с делителя, при этом нижнее плечо делителя представлено эквивалентным сопротивлением
диоды
Следовательно, для указанных параметров схемы выходное напряжение для треугольного входного сигнала будет иметь вид, показанный ниже 
диоды
Затруднение здесь возникает в связи с тем, что делитель напряжения не обеспечивает жесткофиксированного значения эталонного напряжения. Хорошо зафиксированный опорный эталонный сигнал не «плывет», а это значит, что источник такого напряжения обладает небольшим импедансом (имеется в виду эквивалентный импеданс).
Интересным примером является использование ограничителя для восстановления сигнала по постоянному току в случае емкостной связи по переменному току. Смысл сказанного поясняет рисунке
Восстановление сигнала по постоянному току схема
Восстановление сигнала по постоянному току.
 Подобные приемы необходимо использовать в схемах, входы которых работают аналогично диодам (например, это могут быть транзисторы с заземленным эмиттером), в противном случае при наличии емкостной связи сигнал просто пропадает.

Двусторонний диодный ограничитель

Эта схема ограничивает «размах» выходного сигнала и делает его равным падению напряжения на диоде, т. е. приблизительно 0,6 В. Может показаться, что это – очень малое значение, но если следующим каскадом схемы является усилитель с большим коэффициентом усиления по напряжению, то входной сигнал для него всегда должен быть немногим больше чем 0 В, иначе усилитель попадет в режим «насыщения» (например, если коэффициент усиления каскада равен 1000, а питающее напряжение составляет ±15 В, то входной сигнал не должен превышать диапазон ±15 мВ). Описанная схема часто используется в качестве защиты на входе усилителя с большим коэффициентом усиления.
двухсторонний ограничитель схема
Диодный ограничитель

Диоды как нелинейные элементы

Мы получим достаточно хорошее приближение, если будем считать, что ток через диод пропорционален экспоненциальной функции от напряжения на нем при данной температуре. В связи с этим диод можно использовать для получения выходного напряжения, пропорционального логарифму тока
диоды
Логарифмический преобразователь: идея схемы основана на нелинейной вольт амперной характеристике диода
Поскольку напряжение U лишь незначительно отклоняется от значения 0,6 В (под воздействием колебаний входного тока), входной ток можно задавать с помощью резистора при условии, что входное напряжение значительно превышает падение напряжения на диоде
диоды
На практике иногда желательно, чтобы в выходном напряжении присутствовало смещение 0,6 В, обусловленное падением напряжения на диоде. Кроме того, желательно, чтобы схема не реагировала на изменения температуры. Эти требования позволяет удовлетворить метод диодной компенсации
диоды
Компенсация падения напряжения на диоде в логарифмическом преобразователе
Резистор R1 открывает диод Д2 и создает в точке А напряжение, равное –0,6 В. Потенциал точки В близок к потенциалу земли (при этом ток Iвх строго пропорционален напряжению Uвх). Если два одинаковых диода находятся в одинаковых температурных условиях, то напряжения на них полностью компенсируют друг друга, за исключением, конечно, той разницы, которая обусловлена входным током, протекающим через диод Д1 и которая определяет выходное напряжение. Для этой схемы резистор R1 следует выбирать таким, чтобы ток через диод Д2 был значительно больше максимального входного тока. При этом условии диод Д2 будет открыт.

Выпрямители в источниках питания

Следует отметить, что диоды, применяемые в источниках питания, это не сигнальные диоды, рассчитанные на высокое быстродействие (несколько наносекунд), малые токи утечки (несколько наноампер) и малую емкость (несколько пикофарад). Сигнальные диоды могут выдерживать ток до 100 мА, а напряжение пробоя редко превосходит 100 В.
Выпрямительные диоды и мосты, предназначенные для работы в источниках питания, выдерживают ток от 1 до 25 А и более, напряжение пробоя их от 100 до 1000 В. Также у них сравнительно большие токи утечки (от микроампер до миллиампер) и довольно большая емкость переходов. Они не предназначены для высоких скоростей переключения. Перечень ряда широко применяемых типов выпрямителей приведен в таблице ниже.
Диоды. Выпрямители в блоках питания
Типичными представителями выпрямителей являются устройства серии 1N4001 1N4007, рассчитанные на ток 1А, с напряжением обратного пробоя от 50 до 1000 В.
Серия 1N5625 рассчитана на 3А, что является почти наивысшим возможным значением тока для элемента в герметичном корпусе с выводами под печатный монтаж (охлаждение за счет теплопроводности выводов).
Популярная серия IN 1183А типичные сильноточные, оснащенные штыревыми выводами выпрямители, с расчетным током 40А и напряжением пробоя до 600 В. Популярны и мостовые выпрямители в пластиковых корпусах, монтируемые на печатных платах, с расчетным током 1 и 2 А и монтируемые на шасси, рассчитанные на 25 А и более.
Для тех применений, где важно высокое быстродействие, используются диоды с быстрым восстановлением. Например, одноамперные диоды серии 1N4933. В низковольтных схемах может оказаться желательным использование диодов Шоттки, например серии 1N5823 с прямым падением напряжения менее 0,4 В при токе 5 А.