Эмиттерный повторитель
На рисунке показан эмиттерный повторитель. Он назван так потому, что выходной сигнал снимается с эмиттера, напряжение на котором равно напряжению на входе (на базе) минус падение напряжения на диоде (на переходе база‑эмиттер): UЭ = UБ – 0,6 В. Выходной сигнал по форме повторяет входной, но уровень его напряжения на 0,6–0,7 В ниже. Для приведенной схемы входное напряжение Uвх должно составлять по крайней мере 0,6 В, иначе выходное напряжение будет равно потенциалу земли. Если к эмиттерному резистору подключить источник отрицательного напряжения, то входной сигнал может быть отрицательным.
Обратите внимание, что в эмиттерном повторителе отсутствует резистор в коллекторной цепи.
На первый взгляд эта схема может показаться бесполезной, но дело в том, что ее входной импеданс значительно больше, чем выходной. Из этого следует, что источник входного сигнала будет отдавать меньшую мощность, если нагрузку подключить к нему не непосредственно, а через эмиттерный повторитель.
Поэтому обладающий внутренним импедансом источник может через повторитель работать на нагрузку, которая обладает сравнимым или даже более низким импедансом, без потери амплитуды сигнала (эта потеря неизбежна при прямом включении из‑за эффекта делителя напряжения). Иными словами, эмиттерный повторитель обеспечивает усиление по току, хотя и не дает усиления по напряжению. Он также обеспечивает усиление по мощности.
Импеданс источника и нагрузки. При анализе электронных схем всегда стремятся связать выходную величину с какой‑либо входной, как например на рисунке
В качестве источника сигнала может выступать выход усилительного каскада (с импедансом Zвых), к которому подключен еще один каскад или нагрузка (обладающая входным импедансом Zвх). Обычно стремятся выполнить условие Zвых<< Zвх (практическое правило рекомендует использовать коэффициент 10, что на самом деле весьма удобно).
В некоторых случаях вполне можно пренебречь этим общим требованием для обеспечения стабильности источника по отношению к нагрузке. В частности, если нагрузка подключена всегда (например, входит в состав схемы) и если она представляет собой известную и постоянную величину Zвх, то нет ничего опасного в том, что она «нагружает» источник. Тем не менее, хуже не будет, если уровень сигнала не изменяется при подключении нагрузки. Кроме того, если Zвх изменяется при изменении уровня сигнала, то стабильный источник (Z вых << Z вх ) обеспечивает линейность, а делитель напряжения дает искажение линейной зависимости.
Наконец, в двух случаях условие Zвых<< Zвх соблюдать просто нельзя: в радиочастотных схемах импедансы обычно выравнивают (Z вых = Z вх )
Второе исключение относится к случаю, когда передаваемым сигналом является не напряжение, а ток. В этом случае ситуация меняется на противоположную, и нужно стремиться к выполнению условия Z вх << Z вых (для источника тока Z вых = ).
Эмиттерный повторитель обладает способностью согласовывать импедансы источников сигналов и нагрузок.
Правило преобразования импедансов для эмиттерного повторителя:
Z вх = (h21э + 1)Z нагр.
Проделав аналогичные преобразования, найдем выходной импеданс эмиттерного повторителя Z вых (импеданс со стороны эмиттера) при использовании источника сигнала с внутренним импедансом Z ист:
Z вых= Z ист/(h21э + 1).
Благодаря таким полезным свойствам эмиттерные повторители находят широкое практическое применение. Например, при создании внутри схем (или на их выходе) источников сигналов с низким импедансом, при получении стабильных эталонных напряжений на основе эталонных источников с высоким импедансом (сформированных, скажем, с помощью делителей напряжения) и для изоляции источников сигналов от влияния последующих каскадов.
Замечания
1. Отметим (правило4 для биполярного транзистора), что транзистор n р n типа в эмиттерном повторителе может только отдавать ток. Например, для схемы, показанной на рисунке ниже, выходное напряжение в положительной полуплоскости изменяется в пределах напряжения насыщения транзистора Uкк (что составляет +9,9 В), в отрицательной полуплоскости оно ограничено значением –5 В. Это связано с тем, что при увеличении отрицательного напряжения на входе транзистор в определенный момент просто выключается, напряжение на входе составляет при этом –4,4 В, а не выходе –5 В.
Дальнейшее увеличение отрицательного напряжения на входе приводит лишь к обратному смещению перехода база‑эмиттер, но на выходе это никак не проявляется. Выходной сигнал для входного синусоидального напряжения с амплитудой 10 В показан на рисунке.
Можно также рассматривать поведение эмиттерного повторителя, исходя из того, что он обладает небольшим выходным импедансом для малого сигнала (динамический импеданс). Его выходной импеданс для большого сигнала может быть значительно больше (равен RЭ). Изменение импеданса от первого значения ко второму происходит в тот момент, когда транзистор выходит из активного режима (в нашем примере при напряжении на выходе –5 В). Иначе говоря, небольшой выходной импеданс для малого сигнала не означает, еще, что схема может создавать большой сигнал на низкоомной нагрузке. Если схема имеет небольшой выходной импеданс для малого сигнала, то из этого не следует, что она обладает способностью передавать в нагрузку большой ток.
Для того чтобы преодолеть ограничение, присущее схеме эмиттерного повторителя, можно, например, в эмиттерной цепи использовать резистор с меньшим сопротивлением (тогда на резисторе и транзисторе будет рассеиваться большая мощность).
Проблемы такого рода возникают также в тех случаях, когда нагрузка эмиттерного повторителя имеет внутри собственный источник напряжения или тока. Примером такой схемы служит стабилизированный источник питания (на выходе которого стоит обычно эмиттерный повторитель), работающий на схему, содержащую собственный источник питания.
2. Напряжение пробоя перехода база‑эмиттер для кремниевых транзисторов невелико и часто составляет всего 6 В. Входные сигналы, имеющие достаточно большую амплитуду для того, чтобы вывести транзистор из состояния проводимости, могут вызвать пробой перехода (и последующее уменьшение значения коэффициента h21э). Для предохранения от пробоя можно использовать диод.
3. Коэффициент усиления по напряжению для эмиттерного повторителя имеет значение чуть меньше 1,0, так как падение напряжения на переходе база‑эмиттер фактически не является постоянным, а немного зависит от коллекторного тока.
Использование эмиттерных повторителей в качестве стабилизаторов напряжения
Простейшим стабилизатором напряжения служит обычный зенеровский диод (стабилитрон)
Через него должен протекать некоторый ток, поэтому нужно обеспечить выполнение следующего условия:
(Uвх – Uвых )/R = Iвых (макс)
Так как напряжение Uвх не стабилизировано, то в формулу нужно поставить наименьшее возможное значение Uвх . Это пример того, как следует проектировать схему для жестких условий работы. На практике учитывают также допуски на параметры компонентов, предельные значения напряжения в сети и т. п., стремясь предусмотреть наихудшее возможное сочетание всех значений.
На стабилитроне рассеивается мощность:
Pстаб = [(Uвх – Uвых )/R – Iвых ]Uвых
Для того чтобы предусмотреть работу в жестких условиях, при расчете Рстаб также следует использовать значения Uвх (макс), R (мин.) и Iвых (мин.).
Стабилизированный источник с стабилитроном, как правило, используют в некритичных схемах или в схемах, где потребляемый ток невелик.
Ограничения такой схемы проявляются в следующем:
Напряжение Uвых нельзя отрегулировать или установить на заданное значение.
Стабилитроны имеют конечное динамическое сопротивление, а в связи с этим они не всегда достаточно сильно сглаживают пульсации входного напряжения и влияние изменения нагрузки.
При широком диапазоне изменения токов нагрузки приходится выбирать стабилитрон с большой мощностью рассеяния, так как при малом токе нагрузки он должен рассеять на себе значительную мощность, равную максимальной мощности в нагрузке.