Кратко о детекторах элементарных частиц

В ядерной физике и физике элементарных частиц, а также в многочисленных областях науки, использующих в своей практике радиоактивные частицы (медицина, судебная экспертиза, промышленный контроль и т. п.), существенное место отводится вопросам обнаружения, идентификации, спектрального анализа заряженных частиц и фотонов высоких энергий (рентгеновских лучей и гамма-лучей).

Кратко о детекторах элементарных частиц

Детекторы рентгеновского и гамма-излучения

Классический образ искателя урана предполагает седеющего, измученного жарой субъекта, который бродит по пустыне со счетчиком Гейгера в руке. В наши дни в отношении детекторов достигнут значительный прогресс. Во всех современных детекторах используется следующий эффект: энергия поступающего в детектор фотона используется для ионизации какого-либо атома, при этом благодаря фотоэлектрическому эффекту излучается электрон. С этим электроном поступают по-разному в различных типах датчиков.

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера.

 Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны, имеется узкое «окошко» из материала, пропускающего интересующее нас излучение (пластик, бериллий и т.п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рисунке:

Кратко о детекторах элементарных частиц
Пропорциональный счетчик частиц. 1 – цилиндрическая камера, 2 – подключение центрального провода, 3 – узкое «окошко»

Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 эВ (электронвольт) энергии в расчете на создаваемую им пару электрон-ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение.

Электро̀нво́льт — внесистемная единица энергии, используемая в атомной и ядерной физике, в физике элементарных частиц и в близких и родственных областях науки. По определению, электронвольт — это энергия, необходимая для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов в 1 В. 1 эВ примерно равен 1,6·10–19 Дж.

В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения.

Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно.

В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае мы получаем хороший большой выходной импульс, но у нас нет никакой информации об энергии рентгеновского излучения.

Если ширина импульса является мерой энергии частицы, то с помощью анализатора ширины импульса (прибора, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму) получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от 1 кэВ до 100 кэВ. Пропорциональные счетчики обладают разрешающей способностью порядка 15% при значении энергии 5,9 кэВ (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп./с).

Сцинтилляторы

Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электро-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем. Распространенным сцинтиллятором является кристаллический иодид натрия (Nal) с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ.

Обычно кристалл Nal обеспечивает разрешение порядка 6% при значении энергии 1,5 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад кобальта-60) и используется в энергетическом диапазоне от 10 кэВ до нескольких ГэВ. Световой импульс имеет длительность порядка 1 мкс, следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы Nal могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе. В корпусе имеется окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

В сцинтилляторах используют также пластики (органические материалы), которые отличаются тем, что они очень недороги. Разрешение у них хуже, чем у иодида натрия, и используют их в основном в тех случаях, когда имеют дело с энергией выше 1 МэВ. Световые импульсы получаются очень короткими. Их длительность составляет примерно 10 нс. В биологических исследованиях в качестве сцинтилляторов используют жидкости («коктейли»). При этом материал, исследуемый на радиоактивность, примешивается к «коктейлю», который помещается в темную камеру с фотоумножителем. В биологических лабораториях можно встретить очень интересные приборы, в которых процесс автоматизирован. В них через камеру счетчика одна за другой помещаются различные ампулы и регистрируются результаты.

Детекторы на твердом теле

Как и в других областях электроники, революцию в области обнаружения рентгеновского и гамма-излучения произвели достижения в технологии изготовления кремниевых и германиевых полупроводников. Детекторы на твердом теле работают точно так же, как классические ионизационные камеры, но активный объем камеры заполняется в данном случае непроводящим (чистым) полупроводником.

Приложенный потенциал порядка 1000 В вызывает ионизацию и генерирует импульс заряда. При использовании кремния электрон теряет всего около 2 эВ на пару электрон-ион. Значит, при той же энергии рентгеновского излучения создается гораздо больше ионов, чем в пропорциональном газонаполненном детекторе, и обеспечивается лучшее энергетическое разрешение благодаря более представительным статистическим данным. Некоторые другие, менее значительные эффекты также способствуют тому, что прибор имеет улучшенные характеристики.

Выпускают несколько разновидностей детекторов на твердом теле: на основе Si(Li) (называются «силли»), Ge(Li) («жилли») и чистого германия (или IG), отличающихся друг от друга материалом полупроводника и примесей, используемых для того, чтобы обеспечить изолирующие свойства. Все они работают при температуре жидкого азота (-196 °C). Все типы полупроводников с примесью лития нужно постоянно держать в холодном состоянии (повышенная температура влияет на детектор так же плохо, как на свежую рыбу).

Типовые детекторы на основе Si(Li) имеют диаметр от 4 до 16 мм и используются в энергетическом диапазоне от 1 до 50 кэВ. Детекторы на основе Ge(Li) и IG используют при работе с более высокими значениями энергии, от 10 кэВ до 10 МэВ. Хорошие детекторы на основе Si(Li) обладают разрешением 150 эВ при значении энергии 5,9 кэВ (2,5%, разрешение в 6-9 раз лучше, чем у пропорциональных счетчиков), германиевые детекторы обладают разрешением порядка 1,8 кэВ при значении энергии 1,5 МэВ (0,14%).

Для того чтобы проиллюстрировать, что дает такое высокое разрешение, придется пробомбардировать лист нержавеющей стали протонами с энергией 2 МэВ и проанализировать полученный рентгеновский спектр. Такое действие называют рентгеновской эмиссией за счет протонов, и оно является мощным средством анализа веществ, при котором используется взаимное расположение спектров элементов.

На рисунке показан энергетический спектр (полученный с помощью анализатора ширины импульсов).

Кратко о детекторах элементарных частиц.Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе Si(Li)
Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе Si(Li)

Каждому элементу соответствуют два видимых рентгеновских импульса, по крайней мере при использовании детектора на основе Si(Li). На графике можно видеть железо, никель и хром. Если нижнюю часть графика укрупнить, то можно будет увидеть и другие элементы. При использовании пропорционального счетчика получается «каша».

Следующий рисунок иллюстрирует аналогичное положение для детекторов гамма-излучения.

Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li).
Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li). (Из брошюры Canberra Ge(Li) Detector Systems фирмы Canberra Industries, Inc.)

На этот раз сравниваются между собой сцинтиллятор на основе Nal и датчик на основе Ge(Li). Как и в предыдущем случае, преимущество в отношении разрешающей способности оказалось на стороне детекторов на твердом теле.

Детекторы на твердом теле обладают самым высоким энергетическим разрешением среди всех детекторов рентгеновского и гамма-излучения. Но у них есть и недостатки:
— маленькая активная область в большом и неуклюжем корпусе (см. рисунок):

Кратко о детекторах элементарных частиц. Криостат с датчиком Ge(Li)
Криостат с датчиком Ge(Li)

— относительно невысокое быстродействие (время восстановления составляет 50 мкс и более)
— высокая стоимость
— для работы с ними нужно запастись большим терпением (но может быть кому-то понравится нянчиться с «пожирателем» жидкого азота, кто знает).

Детекторы заряженных частиц

Детекторы, которые были только что описаны, предназначены для определения энергии фотонов (рентгеновских и гамма-лучей), но не элементарных частиц. Детекторы элементарных частиц имеют несколько иной облик. Кроме того, заряженные частицы отклоняются электрическим и магнитным полями в соответствии с их зарядом, массой и энергией, благодаря чему измерять энергию заряженных частиц значительно проще.

Детекторы с поверхностным энергетическим барьером

 Эти германиевые и кремниевые детекторы аналогичны детекторам из Ge(Li) и Si(Li). Однако их не требуется охлаждать, а это намного упрощает конструктивное оформление прибора. Детекторы с поверхностным энергетическим барьером выпускают с диаметрами от 3 до 50 мм. Их используют в энергетическом диапазоне от 1 МэВ до сотен МэВ, они обладают разрешением от 0,2 до 1% при значении энергии альфа-частиц, равном 5,5 МэВ (распространенная энергетическая калибровка, которая обеспечивается при распаде америция-241).

Детекторы Черенкова

При очень высоких значениях энергии (1 ГэВ и выше) заряженная частица может опередить свет в материальной среде и вызвать излучение Черенкова, «видимую ударную волну». Они находят широкое применение при экспериментах в физике высоких энергий.

Ионизационные камеры

Классическую газонаполненную камеру, рассмотренную выше в связи с рентгеновским излучением, можно использовать также в качестве детектора заряженных частиц. Простейшая ионизационная камера состоит из камеры, заполненной аргоном, и проходящего по всей ее длине провода. В зависимости от того, для работы с какими энергиями предназначена камера, ее длина может составлять от нескольких сантиметров до нескольких десятков сантиметров. В некоторых разновидностях прибора используют не один, а несколько проводов или пластин и другие газы-наполнители.

Душевые камеры

Душевая камера является электронным эквивалентом ионизационной камеры. Электрон попадает в камеру, заполненную жидким аргоном, и создает «душ» из заряженных частиц, которые затем притягиваются к заряженным пластинам. Специалисты в области физики высоких энергий любят называть такие приборы калориметрами

Сцинтилляционные камеры

Заряженную частицу можно обнаружить с очень хорошим энергетическим разрешением с помощью фотоумножителей по ультрафиолетовым вспышкам, которые возникают при движении заряженной частицы в камере, заполненной жидким или газообразным аргоном или ксеноном. Сцинтилляционные камеры обладают более высоким быстродействием по сравнению с ионизационными и душевыми камерами.

Дрейфовые камеры

Это достижение в области физики высоких энергий, которое обусловлено успехами в области быстродействующих диалоговых вычислительных систем. Концепция их проста. Есть камера, в которой под атмосферным давлением находится газ (обычная смесь аргона с этаном) и множество проводов с приложенным к ним напряжением. В камере действуют электрические поля, и когда в нее попадает заряженная частица, ионизирующая газ, ионы оказываются в сфере действия проводов.

Отслеживаются амплитуды сигналов и моменты времени по всем проводам. На основе этой информации строится траектория движения частицы. Если в камере действует еще магнитное поле, то можно также определить количество движения.

Дрейфовая камера завоевала положение универсального детектора заряженных частиц для физики высоких энергий. Она может обеспечить пространственное разрешение порядка 0,2 мм и выше для объемов, которые могут вместить даже вас.