Резистор

Резисторы поистине вездесущи. Типы резисторов почти столь же многочисленны, как и схемы, в которых они применяются. Резисторы используются в усилителях, в качестве нагрузки для активных устройств, в схемах смещения и в качестве элементов обратной связи. Вместе с конденсаторами они используются для задания постоянной времени и работают как фильтры. Они служат для установки величин рабочих токов и уровней сигналов. В схемах питания резисторы используются для уменьшения напряжения за счет рассеяния мощности, для измерения токов и для разряда конденсаторов после снятия питания. В прецизионных схемах они помогают устанавливать нужные токи, обеспечивать точные коэффициенты пропорциональности для напряжения, устанавливать точные коэффициенты усиления. В логических схемах резисторы выступают в качестве конечных элементов линий и шин, «повышающих» и «понижающих» элементов. В высоковольтных схемах резисторы служат для измерения напряжений, для выравнивания токов утечки через диоды или конденсаторы, соединенные последовательно. На радиочастотах они используются даже в качестве индуктивностей.
Промышленность выпускает резисторы с сопротивлением от 0,01 Ом до 1012 Ом и мощностью от 1/8 до 250 Вт с допуском от 0,005 до 20 %. Резисторы изготавливают из графитовых смесей, металлических пленок, проводов, накрученных на каркас, или на основе полупроводниковых элементов, подобных полевым транзисторам. Наиболее распространены углеродистые композиционные резисторы, имеющие мощность 1/4 или 1/2 Вт. Существует стандартный диапазон значений сопротивлений ‑ от 1 Ом до 100 МОм, причем для резисторов с допуском на сопротивление, равным 5 %, выпускается в два раза больше значений сопротивлений, чем для резисторов с допуском 10 %
Резисторы настолько просты в обращении, что очень часто их принимают как нечто само собой разумеющееся. Между тем они не идеальны, и стоит обратить внимание на некоторые их недостатки.
       Основной недостаток состоит в изменении сопротивления во времени под действием температуры, напряжения, влажности. Другие недостатки связаны с индуктивными свойствами (они существенно сказываются на высоких частотах), с наличием термальных точек в мощных схемах или шумов в усилителях с низким уровнем шума.
В схемах, где требуется высокая точность или стабильность, следует использовать резисторы из металлической пленки с допуском 1 %.
       Они обеспечивают стабильность не хуже 0,1 % в нормальных условиях и не хуже 1 % в самых жестких условиях. Прецизионные проволочные резисторы способны удовлетворить наиболее высоким требованиям.
Если ожидается, что мощность, рассеиваемая в схеме, будет составлять более 0,1 Вт, то следует выбрать резистор с большим значением рассеиваемой мощности. Композиционные углеродистые резисторы характеризуются мощностью до 2 Вт, а мощные проволочные резисторы ‑ более высокими значениями. Для мощных схем наилучшие характеристики обеспечивает резистор с отводом тепла. Резисторы этого типа выпускаются с допуском 1 % и могут надежно работать при собственной температуре до 250 °C в течение длительного периода времени. Допустимая рассеиваемая мощность зависит от воздушного потока, температурных условий на выводах и плотности схемы; следовательно, мощность на резисторе следует рассматривать как грубую ориентировочную величину.
Резистор характеризуется величиной сопротивления.
R  = U /I;
Резисторы наиболее распространенного типа – углеродистые композиционные – имеют сопротивление от 1 ома (1 Ом) до 22 мегаом (22 МОм).
Резисторы характеризуются еще и мощностью, которую они рассеивают в пространство (наиболее распространены резисторы с мощностью рассеяния 1/4 Вт) и такими параметрами, как допуск (точность), температурный коэффициент, уровень шума, коэффициент напряжения (показывающий, в какой степени сопротивление зависит от приложенного напряжения), стабильность во времени, индуктивность и пр.
Нельзя  называть резистор сопротивлением.
На практике, когда речь идет о резисторах с сопротивлением более 1000 Ом (1 кОм), иногда оставляют только приставку, опуская в обозначении «Ом», т. е. резистор с сопротивлением 10 кОм иногда обозначают как 10 К, а резистор с сопротивлением 1 МОм – как 1 М. На схемах иногда опускают и обозначение «Ом», оставляя только число.
Сопротивление двух последовательно соединенных резисторов равно:
R  = R1  + R2 .
При последовательном соединении резисторов всегда получаем большее сопротивление, чем сопротивление отдельного резистора.
последовательное соединение резисторов
Сопротивление двух параллельно соединенных резисторов равно
R  = R1R2 /(R1  + R2 ) или R  = 1/(1/R1  + 1/R2 ).
При параллельном соединении резисторов всегда получаем меньшее сопротивление, чем соединение отдельных резисторов.
Параллельное соединение резисторов

Интуитивные правила вычисления сопротивления

Правило 1.  Сопротивление двух резисторов, один из которых обладает большим сопротивлением, а другой малым, соединенных между собой последовательно (параллельно), приблизительно равно большему (меньшему) из двух сопротивлений.

Правило 2.  Допустим, вы хотите узнать, чему равно сопротивление двух параллельно соединенных резисторов, обладающих сопротивлением 5 и 10 кОм. Если вообразить, что резистор сопротивлением 5 кОм представляет собой параллельное соединение двух резисторов сопротивлением 10 кОм, то схема будет представлена параллельным соединением трех резисторов с сопротивлением 10 кОм. Так как сопротивление одинаковых параллельно соединенных резисторов равно 1/n ‑й части сопротивления одного из них, то ответ в нашей задаче будет 10 кОм/3, или 3,33 кОм.

Переменные резисторы

Переменные резисторы или потенциометры используют для регулирования в схемах, их ручки часто выводят на панели приборов. Наиболее распространенным является потенциометр типа АВ, рассчитанный на мощность до 2 Вт; этот потенциометр изготовлен из того же материала, что и постоянный композитный резистор, и имеет скользящий контакт. Потенциометры других типов изготовляют из керамических материалов и пластиков; они обладают улучшенными характеристиками. Более высоким разрешением и более высокой линейностью обладают многооборотные потенциометры (3,5 или 10 оборотов). В ограниченном количестве промышленность выпускает также сблокированные потенциометры (несколько независимых секций, собранных на одной оси) для тех областей применения, где нужны именно такие потенциометры.
Потенциометры, о которых шла речь, устанавливают чаще всего на лицевых панелях приборов, внутри же приборов устанавливают подстроенные потенциометры, которые также бывают одно‑ и многооборотными и могут быть установлены на платах с печатным монтажом. Они используются, например, при калибровке прибора, которая выполняется «раз и навсегда». Полезный совет: не поддавайтесь соблазну установить в схеме побольше потенциометров. Лучше потратить больше сил на разработку, чем на регулировку.
На показано условное обозначение потенциометра. Обозначения «по часовой стрелке» и «против часовой стрелки» указывают направление вращения.
Потенциометр обозначение
Потенциометр (переменный резистор с тремя выводами)
Совет по работе с переменными резисторами: не стремитесь к тому, чтобы заменить потенциометром резистор с определенным сопротивлением. Соблазн, конечно, велик ‑ ведь с помощью потенциометра можно установить такое значение сопротивления, какое хочется. Вся беда в том, что стабильность потенциометра ниже, чем стабильность хорошего (1 %) резистора и, кроме того, потенциометры не дают хорошего разрешения (т. е. с их помощью нельзя точно установить значение сопротивления). Если на каком‑либо участке схемы нужно установить точное значение сопротивления, воспользуйтесь сочетанием прецизионного резистора (1 % и выше) и потенциометра, причем большая часть сопротивления должна определяться постоянным резистором. Например, если нужно получить сопротивление 23,4 кОм, воспользуйтесь последовательным соединением постоянного резистора с сопротивлением 22,6 кОм (точность 1 %) и подстроечного потенциометра с сопротивлением 2 кОм. Можно также использовать последовательное соединение нескольких прецизионных резисторов, в котором самый маленький по величине резистор дополняет полное сопротивление до нужного точного значения.
В некоторых случаях в качестве переменных резисторов, управляемых напряжением, можно использовать полевые транзисторы. Транзисторы можно использовать в качестве усилителей с переменным коэффициентом усиления, управляемым напряжением.